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Abstract:
We present an explicit method for simulating origami that can be rapidly com-
puted on a Graphics Processing Unit (GPU). Previous work on origami simulation
methods model the geometric or structural behaviors of origami with a focus on
physical realism; in this paper we introduce a compliant, explicit numerical sim-
ulation method that emphasizes computational speed and interactivity. We do this
by reformulating existing techniques for simulating origami so that they can be
computed on highly parallel GPU architectures. We implement this method in an
open-source, GPU-accelerated WebGL app that runs in any modern browser. We
evaluate our method’s performance, stability, and scalability to existing methods
(Freeform Origami, MERLIN) and demonstrate its capacity for real-time interac-
tion through a traditional GUI and immersive virtual reality.

1 Introduction
Physical simulations of origami allow designers to better understand how modifica-
tions to a crease pattern affect its folded state. Real-time simulation-based feedback
can provide more intuitive ways to edit a folded pattern or to enforce desired geo-
metric constraints, such as global developability. In particular, simulation provides
an approach to inverse design, where computational tools generate valid designs
according to high-level user-specified goals. An alternative to algorithmic inverse
design (as in e.g. [Lang 96,Demaine and Tachi 17]) is to develop interactive design
tools coupled with tightly integrated simulation capability [Tachi 10,Tang et al. 16].
This work aims to create a fast, interactive simulation environment that could serve
as the backbone for new computational design tools for origami.

2 Simulation Methods
Numerical methods for simulating origami typically discretize an origami crease
pattern into a rigid-body linkage or finite element mesh and implicitly solve a lin-
ear system of equations for small displacements. Through an iterative process,
these methods compute large, non-linear deformations of origami from its ini-
tially flat or folded state. Rigid origami simulators [Tachi 06] model the rigid
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motions of origami with an emphasis on kinematic accuracy. Finite element meth-
ods (FEM) explore the structural properties of the origami’s folded or partially
folded states using realistic material models and higher-order elements such as
plates/shells [Schenk et al. 14, Peraza Hernandez et al. 16], or volumetric ele-
ments [Ablat and Qattawi 18].

Bar-and-hinge models are an efficient modeling abstraction for approximating
the mechanical behavior of origami [Tachi 10, Liu and Paulino 16]. Despite their
simplicity, bar-and-hinge models can be used to capture realistic behaviors, such
as out-of-plane bending [Tachi 13, Schenk and Guest 11] and in-plane shearing
[Filipov et al. 17] of regions between creases.

The purpose of our solver is not to model physical behavior that has not been
previously explored, but rather to rapidly compute the folded state of origami for
applications with direct user interaction. Our solver reframes prior implicit meth-
ods into a dynamic, explicit form that is solved in a highly parallel process on
a GPU. We use compliant constraints to guide the folding of the origami model,
allowing the user to trade off computational speed for accuracy (or vice versa).

Sections 2.1–2.4 outline the setup for the method (based on prior work by
[Schenk and Guest 11] and [Tachi 10], repeated here for clarity); Section 2.5 intro-
duces our explicit integration method; and Section 3 discusses the parallelization
of this method on the GPU.

2.1 Meshing

First we discretize the origami crease pattern into a triangulated mesh. We triangu-
late the crease pattern by adding extra edges across any polygonal faces with more
than three sides (Figure 1). Following [Schenk and Guest 11], we call these edges
“facet creases” and elastically constrain them to remain flat while folding.
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Figure 1: Triangulation of an origami crease pattern (left) into a triangulated mesh
(center). Polygonal faces may be triangulated in an automated process, or con-
trolled directly by the user. (right) Unlike mountain and valley creases, facet creases
formed by triangulation are driven flat by elastic constraints during folding.

Each of the edges in the resulting mesh is modeled as a beam in a pin-jointed
truss, subject to axial and angular constraints, which we now detail.
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Figure 2: (left) A crease pattern is triangulated and simulated as a pin-jointed truss
network. (center) Beams in the truss are modeled as linear-elastic springs. (right)
Formulation of axial constraints.

2.2 Axial Constraints
Axial constraints prevent stretching and compression of the origami surface during
folding. Each beam element behaves like a linear-elastic spring that applies forces
only in its axial direction (Figure 2). At each step of the simulation, we calculate the
length of each beam from the position of the nodes at its endpoints. We compute
the force exerted on each node in the beam's local coordinate space by Hooke's
Law:

Fl = � kaxial(l � l0);

whereFl is the force along the beam's axis,kaxial is the axial stiffness of the beam
element,l is the length of the beam, andl0 is the nominal length of the beam.

We must convertFl into a vectorFaxial in global coordinate space before we
apply it to the nodes. This axial force vector is related to node positionp by

Faxial = � ÑV(p) = �
¶V
¶p

;

whereV is the potential energy of the system. By the chain rule, we have

Faxial = �
¶V
¶l

¶l
¶p

= Fl
¶l
¶p

;

Faxial = � kaxial(l � l0)
¶l
¶p

: (1)

For the two nodes attached to each beam, we have

¶l
¶p1

= � l̂12;
¶l

¶p2
= l̂12;

wherel̂12 is a unit vector from node 1 to node 2 andp1 is the 3D position of node
1 in global coordinate space.

Axial stiffness can be related to the material properties of the substrate by

kaxial =
EA
l0

;

whereE is Young's modulus andA is the cross-sectional area of the beam. For this
analysis, we consider only the relative stiffness of the axial and angular constraints
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and disregard their physical meaning. We choose constantEA for our model and
calculatekaxial of each beam based on itsl0.

2.3 Crease Constraints

Figure 3: Formulation of crease constraints.

With distance constraints alone, we can model an arbitrary linkage connected
by frictionless, spherical joints. We add constraints on the dihedral angle between
triangulated faces of the mesh to drive and constrain folding.

The fold angle (q) of a crease is the supplement of the dihedral angle between
two neighboring triangular faces. We model angular constraints as linear-elastic
torsional springs that drive neighboring triangular faces toward some target fold
angle. Similarly to Equation 1, angular constraints apply forces to neighboring
nodes by

Fcrease= � kcrease(q � qtarget)
¶q
¶p

; (2)

whereFcreaseis a 3D force vector in global coordinate space,qtarget is the desired
fold angle of the crease,p is the position of the node, andkcrease is the stiffness
of the constraint. Following prior work [Schenk and Guest 11], we choosekcrease
according to its type and scale it by its nominal length (l0):

kcrease=

8
><

>:

l0kfold for a mountain or valley crease;
l0kfacet for a facet crease (from Section 2.1);
0 for a boundary edge or undriven crease:

We choose our stiffnesses so thatkaxial � kfold andkfacet. Angleqtarget also depends
on the type of crease:

qtarget =

8
><

>:

< 0 for a mountain crease;
> 0 for a valley crease;
0 for a facet crease:

The precise value ofqtarget for mountain/valley creases is set by the user; see Sec-
tion 3.
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