
Fast, Interactive Origami Simulation
using GPU Computation

Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld

Abstract:
We present an explicit method for simulating origami that can be rapidly com-
puted on a Graphics Processing Unit (GPU). Previous work on origami simulation
methods model the geometric or structural behaviors of origami with a focus on
physical realism; in this paper we introduce a compliant, explicit numerical sim-
ulation method that emphasizes computational speed and interactivity. We do this
by reformulating existing techniques for simulating origami so that they can be
computed on highly parallel GPU architectures. We implement this method in an
open-source, GPU-accelerated WebGL app that runs in any modern browser. We
evaluate our method’s performance, stability, and scalability to existing methods
(Freeform Origami, MERLIN) and demonstrate its capacity for real-time interac-
tion through a traditional GUI and immersive virtual reality.

1 Introduction
Physical simulations of origami allow designers to better understand how modifica-
tions to a crease pattern affect its folded state. Real-time simulation-based feedback
can provide more intuitive ways to edit a folded pattern or to enforce desired geo-
metric constraints, such as global developability. In particular, simulation provides
an approach to inverse design, where computational tools generate valid designs
according to high-level user-specified goals. An alternative to algorithmic inverse
design (as in e.g. [Lang 96,Demaine and Tachi 17]) is to develop interactive design
tools coupled with tightly integrated simulation capability [Tachi 10,Tang et al. 16].
This work aims to create a fast, interactive simulation environment that could serve
as the backbone for new computational design tools for origami.

2 Simulation Methods
Numerical methods for simulating origami typically discretize an origami crease
pattern into a rigid-body linkage or finite element mesh and implicitly solve a lin-
ear system of equations for small displacements. Through an iterative process,
these methods compute large, non-linear deformations of origami from its ini-
tially flat or folded state. Rigid origami simulators [Tachi 06] model the rigid

GHASSAEI, DEMAINE, GERSHENFELD

motions of origami with an emphasis on kinematic accuracy. Finite element meth-
ods (FEM) explore the structural properties of the origami’s folded or partially
folded states using realistic material models and higher-order elements such as
plates/shells [Schenk et al. 14, Peraza Hernandez et al. 16], or volumetric ele-
ments [Ablat and Qattawi 18].

Bar-and-hinge models are an efficient modeling abstraction for approximating
the mechanical behavior of origami [Tachi 10, Liu and Paulino 16]. Despite their
simplicity, bar-and-hinge models can be used to capture realistic behaviors, such
as out-of-plane bending [Tachi 13, Schenk and Guest 11] and in-plane shearing
[Filipov et al. 17] of regions between creases.

The purpose of our solver is not to model physical behavior that has not been
previously explored, but rather to rapidly compute the folded state of origami for
applications with direct user interaction. Our solver reframes prior implicit meth-
ods into a dynamic, explicit form that is solved in a highly parallel process on
a GPU. We use compliant constraints to guide the folding of the origami model,
allowing the user to trade off computational speed for accuracy (or vice versa).

Sections 2.1–2.4 outline the setup for the method (based on prior work by
[Schenk and Guest 11] and [Tachi 10], repeated here for clarity); Section 2.5 intro-
duces our explicit integration method; and Section 3 discusses the parallelization
of this method on the GPU.

2.1 Meshing

First we discretize the origami crease pattern into a triangulated mesh. We triangu-
late the crease pattern by adding extra edges across any polygonal faces with more
than three sides (Figure 1). Following [Schenk and Guest 11], we call these edges
“facet creases” and elastically constrain them to remain flat while folding.

node

edge

face

mountain

valley

facet crease

Figure 1: Triangulation of an origami crease pattern (left) into a triangulated mesh
(center). Polygonal faces may be triangulated in an automated process, or con-
trolled directly by the user. (right) Unlike mountain and valley creases, facet creases
formed by triangulation are driven flat by elastic constraints during folding.

Each of the edges in the resulting mesh is modeled as a beam in a pin-jointed
truss, subject to axial and angular constraints, which we now detail.

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

Figure 2: (left) A crease pattern is triangulated and simulated as a pin-jointed truss
network. (center) Beams in the truss are modeled as linear-elastic springs. (right)
Formulation of axial constraints.

2.2 Axial Constraints
Axial constraints prevent stretching and compression of the origami surface during
folding. Each beam element behaves like a linear-elastic spring that applies forces
only in its axial direction (Figure 2). At each step of the simulation, we calculate the
length of each beam from the position of the nodes at its endpoints. We compute
the force exerted on each node in the beam’s local coordinate space by Hooke’s
Law:

Fl =−kaxial(l− l0),

where Fl is the force along the beam’s axis, kaxial is the axial stiffness of the beam
element, l is the length of the beam, and l0 is the nominal length of the beam.

We must convert Fl into a vector Faxial in global coordinate space before we
apply it to the nodes. This axial force vector is related to node position p by

Faxial =−∇V (p) =−∂V
∂p

,

where V is the potential energy of the system. By the chain rule, we have

Faxial =−
∂V
∂ l

∂ l
∂p

= Fl
∂ l
∂p

,

Faxial =−kaxial(l− l0)
∂ l
∂p

. (1)

For the two nodes attached to each beam, we have

∂ l
∂p1

=−l̂12,
∂ l

∂p2
= l̂12,

where l̂12 is a unit vector from node 1 to node 2 and p1 is the 3D position of node
1 in global coordinate space.

Axial stiffness can be related to the material properties of the substrate by

kaxial =
EA
l0

,

where E is Young’s modulus and A is the cross-sectional area of the beam. For this
analysis, we consider only the relative stiffness of the axial and angular constraints

GHASSAEI, DEMAINE, GERSHENFELD

and disregard their physical meaning. We choose constant EA for our model and
calculate kaxial of each beam based on its l0.

2.3 Crease Constraints

Figure 3: Formulation of crease constraints.

With distance constraints alone, we can model an arbitrary linkage connected
by frictionless, spherical joints. We add constraints on the dihedral angle between
triangulated faces of the mesh to drive and constrain folding.

The fold angle (θ) of a crease is the supplement of the dihedral angle between
two neighboring triangular faces. We model angular constraints as linear-elastic
torsional springs that drive neighboring triangular faces toward some target fold
angle. Similarly to Equation 1, angular constraints apply forces to neighboring
nodes by

Fcrease =−kcrease(θ −θtarget)
∂θ

∂p
, (2)

where Fcrease is a 3D force vector in global coordinate space, θtarget is the desired
fold angle of the crease, p is the position of the node, and kcrease is the stiffness
of the constraint. Following prior work [Schenk and Guest 11], we choose kcrease
according to its type and scale it by its nominal length (l0):

kcrease =

l0kfold for a mountain or valley crease,
l0kfacet for a facet crease (from Section 2.1),
0 for a boundary edge or undriven crease.

We choose our stiffnesses so that kaxial� kfold and kfacet. Angle θtarget also depends
on the type of crease:

θtarget =

< 0 for a mountain crease,
> 0 for a valley crease,
0 for a facet crease.

The precise value of θtarget for mountain/valley creases is set by the user; see Sec-
tion 3.

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

Each angular constraint applies forces to four neighboring nodes, as indicated
in Figure 3. The partial derivatives of θ with respect to p are given by

∂θ

∂p1
=

n1

h1
, (3)

∂θ

∂p2
=

n2

h2
, (4)

∂θ

∂p3
=

−cotα4,31

cotα3,14 + cotα4,31

n1

h1
+

−cotα4,23

cotα3,42 + cotα4,23

n2

h2
, (5)

∂θ

∂p4
=

−cotα3,14

cotα3,14 + cotα4,31

n1

h1
+

−cotα3,42

cotα3,42 + cotα4,23

n2

h2
, (6)

where n1 and n2 are face normals, h1 and h2 are lever arms from the crease to the
outer nodes, and in-plane angles α are oriented according to Figure 3.

2.4 Face Constraints

axial constraints face constraints

Figure 4: (left and center) Formulation of face constraints. (right) As a triangu-
lar face (with two bottom nodes fixed) flattens, the restoring force applied to the
center node by two neighboring axial constraints lessens the more the triangle is
deformed. In contrast, three face constraints apply a greater force as the triangle
deforms. Individual contributions shown in light blue, net force shown in dark blue,
undeformed state shown in grey, fixed nodes indicated with squares.

With beam and crease constraints alone, we have enough to simulate folding.
Though not strictly necessary, the addition of constraints on each interior angle of
the triangular faces of the mesh helps to prevent shearing of the folding surface,
especially for high-aspect-ratio triangles (Figure 4). In practice, we have found
that face constraints increase the stability of the simulation across a variety of input
crease patterns. As with the previous constraints, we model this as a linear-elastic
spring.

For each interior angle of a triangular face, we apply forces to its three neigh-
boring nodes according to

Fface =−kface(α−α0)
∂α

∂p
,

where α is the current angle, α0 is its nominal angle in the flat state, p is the position
of a neighboring node, and kface is the stiffness of the face constraint. The partial

GHASSAEI, DEMAINE, GERSHENFELD

derivatives of p with respect to α are given by

∂p1

∂α2,31
=

n× (p1−p2)

‖p1−p2‖2 ,

∂p2

∂α2,31
=−n× (p1−p2)

‖p1−p2‖2 +
n× (p3−p2)

‖p3−p2‖2 ,

∂p3

∂α2,31
=−n× (p3−p2)

‖p3−p2‖2 ,

where n is the normal vector of the triangular face and α is defined according to
Figure 4.

2.5 Numerical Integration
So far, the governing equations we have described in the previous sections are
a mix of the methods described by [Tachi 10] and [Schenk and Guest 11]. Our
methods differ from prior work by calculating small displacements of the nodes
under axial and angular constraints using an explicit method; these computations
occur in parallel on a per-node basis, without a global stiffness/Jacobian matrix.

We calculate the total force on a node as the sum of the forces applied by
neighboring beams, creases, and faces:

Ftotal = ∑
beams

Fbeam + ∑
creases

Fcrease + ∑
faces

Fface.

We compute nodal acceleration by

a =
Ftotal

m
,

where a is a 3D acceleration vector in global coordinate space and m is the mass of
the node. In this analysis, we assume the mass at each node is 1. A more accurate
calculation of nodal mass would result in more realistic dynamics.

We calculate velocity and displacement at each node by forward Euler integra-
tion:

vt+∆t = vt +a∆t,

pt+∆t = pt +vt+∆t∆t,

where ∆t is a small time step. In general, ∆t should be chosen so that it is small
enough to keep the simulation numerically stable, but not too small that it slows
down the simulation unnecessarily. We have chosen ∆t to satisfy

∆t <
1

2πωmax
, (7)

where ωmax is the maximum natural frequency of any constraint in the model. Be-
cause we will always choose kaxial � kfold, kfacet, and kaxial > kface, we consider

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

only axial constraints for this analysis:

ω =

√
kaxial

mmin
, (8)

where mmin is the minimum mass of the two nodes on either end of the beam.
We assume the initial condition:

v0 = 0.

The above formulation may eventually converge to a static state due to numer-
ical dissipation, but this may take more iterations than is practical. We introduce
viscous damping between neighboring vertices in the mesh:

Fdamping = c(vneighbor−v),

where c is the viscous damping coefficient and vneighbor−v is the relative velocity
between a node and its neighbor. We use this simplified approach to damping rather
than calculating the damping force for every constraint in the system to minimize
floating-point operations per simulation cycle. Additionally, we found that even
with critical damping on all constraints, the structure was globally underdamped
[Hiller and Lipson 14]. A more thorough approach to damping could result in
more realistic dynamics.

We compute c for each node according to the stiffest constraint in our system
(kaxial):

c = 2ζ
√

kaxialm,

where ζ is the damping ratio and m is the mass of the node (again, assumed to be
1 in this analysis). We’ve found that most patterns are stable with 0.01 ≤ ζ ≤ 0.5.

3 Implementation
We implemented this solver in an open-source1, interactive WebGL app that runs in
any modern web browser2. We use the FOLD format of [Demaine et al. 16] for in-
put/output and as an internal data structure to maximize interoperability with other
origami software; we also support SVG input/output with opacity mapped to final
fold angle and color mapped to crease type. We make few assumptions about the
topology of the folded structure, allowing our solver to simulate origami, kirigami,
discretized curved creases, underconstrained patterns with undriven hinges, pat-
terns with holes, and 3D structures that do not have a flat state. We provide an
interface to control simulation parameters in real time, such as stiffness and damp-
ing coefficients and the number of simulation steps per render cycle (Figure 6).

1https://github.com/amandaghassaei/OrigamiSimulator/
2http://apps.amandaghassaei.com/OrigamiSimulator/

https://github.com/amandaghassaei/OrigamiSimulator/
http://apps.amandaghassaei.com/OrigamiSimulator/

GHASSAEI, DEMAINE, GERSHENFELD

A

b

d

f

e

a

c

B

C

D

E

F

Figure 5: Static solution of simulated origami at 0%, 20%, 40%, 60%, 80%, and
100% of target fold angle. Patterns depicted are (A) Miura-ori tessellation, (B)
Mooser’s Train (rigidly foldable design by William Gardner), (C) Robert Lang’s
Orchid Blossom, (D) Yoshinobu Miyamoto’s RES Square Tower, (E) kirigami honey-
comb [Saito et al. 14], and (F) pop-up house by Popupology. Corresponding crease
patterns above with line opacity indicating final fold angle and color indicating
crease type: mountain (red), valley (blue), border (black), cut (green), user-defined
facet crease (orange). EA = 20, k f old = 0.7, k f acet = 0.7, and k f ace = 0.2.

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

Figure 6: Screenshot of Origami Simulator application.

Before the solver begins, we precompute stiffness and damping coefficients
as well as a lookup table of geometric relationships between elements. We run a
series of GPU programs in WebGL fragment shaders to compute one step of the
simulation:

1. Calculate face normals of all triangular faces in mesh (one face per thread).

2. Calculate current fold angle for all edges in mesh (one edge per thread).

3. Calculate coefficients of Equations 3–6 for all edges in mesh (one edge per
thread).

4. Calculate forces and velocities for all nodes in mesh (one node per thread).

5. Calculate positions for all nodes in mesh (one node per thread).

In other GPU programming frameworks (e.g., NVIDIA CUDA), this solver could
be implemented in fewer steps, but we chose to use WebGL shaders to maximize
portability across operating systems and for easy browser support.

After a specified number of simulation steps, we render the geometry to the
screen. Figure 5 shows a collection of simulated structures.

3.1 Strain Visualization
We implement a strain visualization tool to help users identify locally deformed
regions in the mesh (Figure 7). We approximate the engineering strain across the
surface of a folded origami structure by measuring the displacement of the axial
constraints. For a given beam in the pin-jointed truss, we define engineering strain
ε by

ε =
l− l0

l0
,

where l is the length of the beam, and l0 is the nominal length of the beam.

GHASSAEI, DEMAINE, GERSHENFELD

The magnitude of engineering strain at a node with N beams is calculated by
averaging the absolute value of the strain contribution from each beam:

εnode =
1
N

N

∑
i=1

|∆li|
li

.

We translate this strain into an RGB color on the spectrum of blue (no strain) to red
(high strain) and apply it to the 3D model for visualization. The vertex colors are
linearly interpolated across the faces of the mesh.

0 2000 4000 6000 10,000 30,000

0 500

strain visualization “color” mode

1000 3000 5000 7000

Axial Strain (%)
0 1 2 3 4 ≥ 5

Figure 7: Axial strain visualization of a hexagonal hypar variant (top, folded to
±3π/4 at all creases) and waterbomb tessellation (middle, folded to ±3π/5 at all
creases). The sequences show our method solving for a fixed final fold angle in order
of increasing time, with the number of simulation steps indicated below. Initially,
both models move to a nearly planar state with high internal strain, which is slowly
relaxed as they curl into the third dimension. (bottom) An irregular vertex in a Resch
tessellation deforms the mesh slightly in material ”color” rendering mode, but is
clearly visible in the axial strain visualization. Simulation parameters for hypar
variant: EA = 100, k f old = 0.7, k f acet = 0.7, and k f ace = 1, ζ =0.45. Simulation
parameters for waterbomb and Resch tessellation: EA = 20, k f old = 0.7, k f acet =
0.7, and k f ace = 0.2, ζ =0.45.

3.2 User Interaction
We introduce user interaction by modifying the boundary conditions of the simu-
lation in real time. Compliance in the simulated structure allows users to toggle
between stable states of bistable patterns (Figure 8A). Using the WebVR API, we
are able to run our app on the HTC Vive and Oculus virtual reality (VR) headset
and controllers (Figure 8B). In this mode, users can manipulate the origami with
both hands and view the rendering in an immersive 3D environment. Future work

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

will close the loop between design and simulation, allowing for interactive modifi-
cations to the folded structure.

A B

Figure 8: (A) User interaction pushing bistable pleat model from one stable state to
the other. (B) Virtual reality interface showing direct user interaction with folding
Huffman waterbomb model. (B, bottom) With strain visualization turned on, users
can pull and push on the mesh while visualizing strain in real time.

4 Discussion
We performed a series of benchmarking tests to understand how the simulation
speed of our solver scales with the number of nodes in the origami model (Fig-
ure 9). We ran these tests using the Chrome browser on two different GPUs: an Iris
Graphics 6100 with 348 cores and a 300MHz clock, and two SLI-linked GeForce
GTX 980’s with 4096 combined cores and a 1.1GHz clock. We imported a series of
n×n Miura-Ori tessellations of different dimensions into the solver and measured
the simulation speed without rendering.

We found that the time to compute one cycle of the simulation was approxi-
mately constant while the number of nodes in the mesh (N) was less than the num-
ber of available GPU cores (indicated by the blue X’s in Figure 9a). As N grows
beyond the available cores, we see approximately linear scaling of simulation time
with N as the GPU queues batches of threads and executes the batches in series.

4.1 Comparison with Existing Methods
We compare the speed of our solver to existing methods MERLIN [Liu and Paulino 17]
and Freeform Origami [Tachi 10] (Figure 10). Both methods implicitly solve for
small displacements of a triangulated origami mesh on the CPU.

GHASSAEI, DEMAINE, GERSHENFELD

number of nodes in mesh

GPU Benchmarking

linear fit, m=0.00058

linear fit, m=0.000046

Iris Graphics 6100
2x GeForce GTX 980
num GPU cores

ti
m

e
pe

r
si

m
ul

at
io

n
st

ep
 (

m
s)

number of nodes in mesh
1000 2000 3000 4000 5000 6000

00.0

0.5

1.0

1.5

2.0

5

10

15

20

25

40,00000 80,000 120,000

Figure 9: Benchmarking time per simulation step as the number of nodes (N) in the
mesh increases. (top left) When the number of nodes is smaller than the number of
available GPU cores (indicated by the blue X’s) the time to complete one simulation
cycle is approximately constant. (top right) For very large meshes, simulation time
scales approximately linearly with N. (bottom) Real-time simulation of a mesh with
2374 nodes.

0 0 10,000 20,000 30,000 40,000
0.0

0.5

1.0

1.5
2.0

2.5

3.0

3.5

4.0

0

5

10

15
20

25

30

35

40

1000 2000
number of nodes in mesh number of nodes in mesh

Freeform Origami (v30)
MERLIN

Benchmarking of Freeform Origami and MERLIN

ti
m

e
pe

r
si

m
ul

at
io

n
st

ep
 (

s)

3000 4000 5000

Figure 10: Benchmarking solver iteration time versus mesh size in Freeform
Origami and MERLIN.

Each iteration of the MERLIN solver computes a global stiffness matrix and
solves a system of equations that relates residual force to internal and external ap-
plied forces using the modified generalized displacement control method. Though
the time to compute each of these steps is about 1000X longer than a single step
in our method (Figure 10), MERLIN takes larger steps while maintaining stabil-
ity for stiffer material settings. A 10× 10 cell Miura-ori tessellation (121 nodes)

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

reaches its final folded state in about 500 iterations of the MERLIN solver with ma-
terial stiffnesses k f old = 0.1, k f acet = 10,000, EA = 100,000, while about 150,000
iterations are needed using our method at these stiffer settings.

0 100 200 1000

no collision detection, no planar constraints

1000 500 1000 1500 2000 10,000 30,000

EA = 50
kface= 3

EA = 20
kface= 5

EA = 100
kface= 0.2

A B

C

D E

Figure 11: Comparison of our method (magenta) and Freeform Origami (gray)
[Tachi 10]. Unless otherwise indicated, simulation settings using our method are
EA = 20, k f old = 0.7, k f acet = 0.7, k f ace = 0.2, and ζ = 0.45, and the number of sim-
ulation steps is indicated below each image in the sequence. (A) Due to compliance
in our axial and face constraints, some deformation of the mesh occurs as it tries
to simultaneously fold a simply folded vertex; (B) by contrast, Freeform Origami
more accurately captures the sequential nature of the folds. (C) The compliance
of our method allows non-rigidly foldable designs like the crane to find their final
folded state (allowing for some self-intersection). (D) Freeform Origami minimizes
geometric error at each step of the simulation, effectively modeling infinitely stiff
meshes. Even with collision detection and planar constraints (infinitely stiff facet
creases) turned off, Freeform Origami is not able to correctly fold a crane. (E)
Similarly, increasing the material stiffness in our solver prevents the crane from
reaching the correct folded state.

Freeform Origami is a rigid origami simulator (though it can also model elas-
tic out-of-plane bending deformations of facets [Tachi 13]). The data points in
Figure 10 were gathered from the FPS display in the app with face, edge, and
vertex rending disabled and collision detection disabled. Each rendering cycle of
Freeform Origami is comprised of many iterations of a conjugate gradient solver,
which should be taken into consideration when comparing the benchmarking data.
Figure 11 depicts the modeling differences between our method and Freeform
Origami. Though Freeform captures the sequential folding of a simple vertex better
than our method, Freeform’s rigid constraints prevent it from folding non-rigidly
foldable patterns like the crane; our method fails similarly when the axial and face
stiffnesses are increased (Figure 11E).

In contrast with the quasi-static methods of Freeform Origami and MERLIN,
the intermediate steps of our explicit solver depict the dynamics of the structural

GHASSAEI, DEMAINE, GERSHENFELD

system. Though we have not taken much care to construct a realistic model of
mass distribution and damping, our solver can be used to produce animations with
plausible time-dependant behavior (Figure 12).

0 1000 2000 3000 4000 5000

10,000 15,000 20,000 25,000 30,000 50,000

Figure 12: Dynamic animation of a circular pleat pattern with iteration number in-
dicated below. Simulation settings: target fold angle of all mountain/valley creases
= ±7π/10, EA = 20, k f old = 0.7, k f acet = 0.7, k f ace = 0.2, and ζ = 0.2.

4.2 Limitations
According to Equations 7 and 8, there is a tradeoff between geometric accuracy
(constraint stiffness) and simulation speed (∆t). Implicit formulations are advanta-
geous in this regard because they can model very stiff systems while maintaining
large step sizes, even though each step requires more computational effort to com-
pute. To mitigate this, we provide easy access to stiffness parameters so that users
may increase constraint stiffness when the model is near its static solution to avoid
unnecessary computational time in the early stages of the simulation.

As is typical with other bar-and-hinge simulation methods, the behavior of the
simulation is sensitive to the discretization of its mesh. This is especially prominent
in the meshing of facets, where there may be more than one way to triangulate
an arbitrary polygonal face (Section 2.1). If specific out-of-plane bending modes
are desired, users may manually define facet creases before importing the designs
into our app (Figure 13). Filipov et al. describe the effect of facet meshing on in-
plane and out-of-plane deformations in bar-and-hinge models of origami in more
detail [Filipov et al. 17].

Figure 13: User defined facet creases along rule lines of curved crease patterns
guide expected out-of-plane bending of regions between mountain/valley creases.

High-aspect-ratio triangles may pose a problem in simulation if they become
so deformed that their face normal (defined by the cross product of two edges) flips

FAST, INTERACTIVE ORIGAMI SIMULATION
USING GPU COMPUTATION

orientation. This problem is not unique to our method, but may be exacerbated by
the compliance of the constraints. This instability is mitigated by carefully chosen,
user-defined facet creases or by increasing axial and face stiffnesses relative to fold
stiffness.

Finally, our method requires a target fold angle for each crease as an input to
the solver. Incorrect target fold angles may deform the final folded state, though
this can usually be diagnosed with the strain visualization tool.

5 Future Work
Parallelization on the GPU is not unique to the explicit integration method intro-
duced in Section 2.5 or to bar-and-hinge models in general. We chose to start
with the methods outlined in this paper in part because of the simplicity of their
implementation, but (as noted in Section 4.2) there are limitations to our current
approach. In immediate future work, we plan to apply GPU parallelization to im-
plicit formulations of bar-and-hinge models, so that we can model stiffer structural
systems in a highly efficient manner. Through GPU acceleration, it may even be
possible to perform more complex FEM in real time, opening up new possibilities
for interactive origami design, optimization, and analysis tools.

Future work may also grow to include collision detection, adaptive time step-
ping, more robust mesh triangulation methods, and the incorporation of a design
interface in our app.

Acknowledgments
This work was supported by sponsors of the Center for Bits and Atoms.

References
[Ablat and Qattawi 18] Muhammad Ali Ablat and Ala Qattawi. “Finite Element Analysis

of Origami-Based Sheet Metal Folding Process.” Journal of Engineering Materials
and Technology 140:April (2018), 1–7.

[Demaine and Tachi 17] Erik D Demaine and Tomohiro Tachi. “Origamizer: A Practical
Algorithm for Folding Any Polyhedron.” 33rd International Symposium on Computa-
tional Geometry :34 (2017), 1–15.

[Demaine et al. 16] Erik D. Demaine, Jason S. Ku, and Robert J. Lang. “A New File Stan-
dard to Represent Folded Structures.” In Abstracts from the 26th Fall Workshop on
Computational Geometry, 2016. See https://github.com/edemaine/fold.

[Filipov et al. 17] E T Filipov, K Liu, T Tachi, M Schenk, and G H Paulino. “Bar and
hinge models for scalable analysis of origami.” International Journal of Solids and
Structures 124 (2017), 26–45.

[Hiller and Lipson 14] Jonathan Hiller and Hod Lipson. “Dynamic Simulation of Soft Mul-
timaterial 3D-Printed Objects.” Soft Robotics 1:1 (2014), 88–101.

https://github.com/edemaine/fold

GHASSAEI, DEMAINE, GERSHENFELD

[Lang 96] Robert J Lang. “A Computational Algorithm for Origami Design.” Proceedings
of the Twelfth Annual Symposium on Computational Geometry.

[Liu and Paulino 16] Ke Liu and Glaucio H Paulino. “MERLIN: A MATLAB implemen-
tation to capture highly nonlinear behavior of non-rigid origami.” Proceedings of the
IASS Annual Symposium.

[Liu and Paulino 17] K Liu and G H Paulino. “Nonlinear mechanics of non-rigid origami:
an efficient computational approach.” Proceedings of the Royal Society A.

[Peraza Hernandez et al. 16] Edwin A Peraza Hernandez, Darren J Hartl, Ergun Akleman,
and Dimitris C Lagoudas. “Computer-Aided Design Modeling and analysis of origami
structures with smooth folds.” Computer-Aided Design 78 (2016), 93–106.

[Saito et al. 14] Kazuya Saito, Sergio Pellegrino, and Taketoshi Nojima. “Manufacture
of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Tech-
niques.” Journal of Mechanical Design 136:May (2014), 1–9.

[Schenk and Guest 11] Mark Schenk and Simon D Guest. “Origami Folding: A Structural
Engineering Approach.” In Origami5: Proceedings of the 5th International Meeting
of Origami Science, Mathematics, and Education, pp. 291–304. CRC Press, 2011.

[Schenk et al. 14] M Schenk, S D Guest, and G J Mcshane. “Novel stacked folded cores
for blast-resistant sandwich beams.” International Journal of Solids and Structures
51:25-26 (2014), 4196–4214.

[Tachi 06] Tomohiro Tachi. “Simulation of Rigid Origami.” In Origami4: Proceedings of
the 4th International Meeting of Origami Science, Mathematics, and Education, 2006.

[Tachi 10] Tomohiro Tachi. “Freeform Variations of Origami.” Journal for Geometry and
Graphics 14:2 (2010), 203–215.

[Tachi 13] Tomohiro Tachi. “Interactive Form-Finding of Elastic Origami.” Proceedings
of the International Association for Shell and Spatial Structures (IASS) Symposium :5
(2013), 7–10.

[Tang et al. 16] C C Tang, P B Bo, J Wallner, and H Pottmann. “Interactive Design of
Developable Surfaces.” Acm Transactions on Graphics 35:2 (2016), 12.

Amanda Ghassaei
Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, e-mail:
amandaghassaei@gmail.com

Erik D. Demaine
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, 32 Vassar Street, Cambridge, Massachusetts 02139, USA e-mail: edemaine@mit.edu

Neil Gershenfeld
Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, e-mail:
neil.gershenfeld@cba.mit.edu

mailto:amandaghassaei@gmail.com
mailto:edemaine@mit.edu
mailto:neil.gershenfeld@cba.mit.edu

	Introduction
	Simulation Methods
	Meshing
	Axial Constraints
	Crease Constraints
	Face Constraints
	Numerical Integration

	Implementation
	Strain Visualization
	User Interaction

	Discussion
	Comparison with Existing Methods
	Limitations

	Future Work

